

Characterising Logics through their Admissible Rules

Jeroen Goudsmit
Utrecht University
July 14th 2014, 17:30 - 17:50

 A / Δ admissible

$$\sigma A$$
 is derivable
$$A / \Delta \text{ admissible}$$

 σC is derivable for some $C \in \Delta$

 σA is derivable $A \sim \Delta \text{ admissible}$

 σC is derivable for some $C \in \Delta$

$\neg C \rightarrow A \lor B$

ı	7	3
,	/	ı
u,	2	-

 $A \vee B$

 $\{A,B\}$

Łukasiewicz 1952 – Kreisel and Putnam 1957

Lukasiewicz 1952 —

Kreisel and Putnam 1957 — 1957 Scott

— 1970 de Jongh

Łukasiewicz 1952 – Kreisel and Putnam 1957 - 1957 Scott - 1970 de Jongh Skura 1989 –

Overview

Overview

Overview

Characterisation of BB_n

3

Internalising Non-derivability

A formula A is derivable iff $\sigma A \vdash \Delta$ yields a classically derivable $C \in \Delta$, for all σ and Δ .

A formula A is derivable iff $\sigma A \vdash \Delta$ yields a classically derivable $C \in \Delta$, for all σ and Δ .

Suppose $\vdash_{\mathsf{IPC}} A$ and $\sigma A \vdash \Delta$.

A formula A is derivable iff $\sigma A \vdash \Delta$ yields a classically derivable $C \in \Delta$, for all σ and Δ .

Suppose $\vdash_{\mathsf{IPC}} A$ and $\sigma A \vdash \Delta$. It follows that $\vdash \sigma A$, so there is a $C \in \Delta$ with $\vdash_{\mathsf{IPC}} C$.

A formula A is derivable iff $\sigma A \vdash \Delta$ yields a classically derivable $C \in \Delta$, for all σ and Δ .

Suppose $\vdash_{\mathsf{IPC}} A$ and $\sigma A \vdash \Delta$. It follows that $\vdash \sigma A$, so there is a $C \in \Delta$ with $\vdash_{\mathsf{IPC}} C$. Hence $\vdash_{\mathsf{CPC}} C$, as desired.

There is no proper extension of IPC that inherits all its admissible rules.

There is no proper extension of IPC that inherits all its admissible rules.

Suppose L \supseteq IPC.

There is no proper extension of IPC that inherits all its admissible rules.

Suppose L \supseteq IPC. This gives a $A \in L - IPC$.

There is no proper extension of IPC that inherits all its admissible rules.

Suppose L \supseteq IPC. This gives a $A \in L$ – IPC. Hence there is a σ and a Δ with $\not\vdash_{CPC} C$ for all $C \in \Delta$ such that

 $\sigma A \vdash_{\mathsf{IPC}} \Delta$.

There is no proper extension of IPC that inherits all its admissible rules.

Suppose L \supseteq IPC. This gives a $A \in L$ – IPC. Hence there is a σ and a Δ with $\not\vdash_{CPC} C$ for all $C \in \Delta$ such that

$$\sigma A \vdash_{\mathsf{I}} \Delta.$$

There is no proper extension of IPC that inherits all its admissible rules.

Suppose L \supseteq IPC. This gives a $A \in L$ – IPC. Hence there is a σ and a Δ with $\not\vdash_{CPC} C$ for all $C \in \Delta$ such that

$$\sigma A \vdash_{\mathsf{L}} \Delta$$
.

But $\vdash_{\mathsf{L}} A$, so $\vdash_{\mathsf{L}} \sigma A$ holds as well.

There is no proper extension of IPC that inherits all its admissible rules.

Suppose L \supseteq IPC. This gives a $A \in L$ – IPC. Hence there is a σ and a Δ with $\not\vdash_{CPC} C$ for all $C \in \Delta$ such that

$$\sigma A \vdash_{\mathsf{L}} \Delta$$
.

But $\vdash_{\mathsf{L}} A$, so $\vdash_{\mathsf{L}} \sigma A$ holds as well. This yields some $C \in \Delta$ with such that $\vdash_{\mathsf{L}} C$.

There is no proper extension of IPC that inherits all its admissible rules.

Suppose L \supseteq IPC. This gives a $A \in L$ – IPC. Hence there is a σ and a Δ with $\not\vdash_{CPC} C$ for all $C \in \Delta$ such that

$$\sigma A \vdash_{\mathsf{L}} \Delta.$$

But $\vdash_{\mathsf{L}} A$, so $\vdash_{\mathsf{L}} \sigma A$ holds as well. This yields some $C \in \Delta$ with such that $\vdash_{\mathsf{CPC}} C$, a contradiction.

Corollary (lemhoff, 2001a):

IPC is the maximal intermediate logic with the rules below, for all n.

$$\frac{\left(\bigvee_{i=1}^{n} C_{i} \to A\right) \to \bigvee_{j=1}^{n} C_{j}}{\left\{\left(\bigvee_{i=1}^{n} C_{i} \to A\right) \to \bigvee C_{j}\right\}_{j=1}^{n}}$$

The universal model

"smallest" model

every finite model fits.

is the

into which

_	

"smallest" model on *X* into which every finite model on *X* fits.

The universal model U(X) is the

- 1960 Nishimura — 1973 Urquhart 1975 Esakia and Grigolia - 1978 Shehtman - 1986 Bellissima

_ 1957 Rieger

3

The universal model is complete.

The universal model is complete: $U(X) \Vdash A \text{ iff } \vdash A \text{ for all } A \in \mathcal{L}(X).$

 $\frac{\bullet}{k}$

Expressing Extensions

Extension Property

Extension Property

Extension Property

nth Extension Property

Visser Rules

$$\frac{\left(\bigvee_{i=1}^{n} C_{i} \to A\right) \to \bigvee_{j=1}^{n} C}{\left\{\left(\bigvee_{i=1}^{n} C_{i} \to A\right) \to C_{j}\right\}_{j=1}^{n}}$$

semantics.

Syntax

Semantics

Syntax

Semantics

Syntax

synta

$$\operatorname{nd} w_i \to \bigvee_{i=1}^n \operatorname{up} w_i \Big) \to \operatorname{nd} w_j \Big\}_{j=1}^n$$

$$\left(\bigvee_{i=1}^{n}\operatorname{nd}w_{i}\rightarrow\bigvee_{i=1}^{n}\operatorname{up}w_{i}\right)\rightarrow\bigvee_{i=1}^{n}\operatorname{nd}w_{i}$$

$$\bigvee_{i=1}^{n}\operatorname{\sf nd} w_{i} o \bigvee_{i=1}^{n}\operatorname{\sf up} w_{i} o \operatorname{\sf nd} w_{j} \bigg\}_{j=1}^{n}$$

$$\left\{ \left(\bigvee_{i=1}^{n} \operatorname{nd} w_{i} \rightarrow \bigvee_{i=1}^{n} \operatorname{up} w_{i} \right) \rightarrow \operatorname{nd} w_{j} \right\}_{j=1}^{n}$$

 $\Big(igveev \mathsf{nd}\, w_i o igveev_{i=1}^n \mathsf{up}\, w_i\Big) o igveev \mathsf{nd}\, w_i$

A logic with the finite model property admits the Visser rules iff it has the extension property.

A logic with the finite model property admits the Visser rules up to *n* iff it has the extension property up to *n*.

Characterisation of BB_n

$\mathsf{BB}_n = \mathsf{IPC} + \bigwedge_{i=0}^n \left(\left(x_i \to \bigvee_{j \neq i} x_j \right) \to \bigvee_{j \neq i} x_j \right) \to \bigvee_{i=0}^n x_i$

 $BB_n \not\vdash A$ iff there is a

finite, proper and at most

n-fold branching tree T with $T \not\Vdash A$.

If T is a finite, proper, and at most n-fold branching tree, then $nd m_T \nearrow \{nd w \mid w \in T \text{ maximal}\}.$

A formula A is derivable in BB_n iff $\sigma A \vdash \Delta$ yields a classically derivable $C \in \Delta$, for all σ and Δ .

A formula A is derivable in BB_n iff $\sigma A \vdash \Delta$ yields a classically derivable $C \in \Delta$, for all σ and Δ .

Suppose $\not\vdash_{BB_n} A$.

A formula A is derivable in BB_n iff $\sigma A \vdash \Delta$ yields a classically derivable $C \in \Delta$, for all σ and Δ .

Suppose $\not\vdash_{BB_n} A$. Then there is a finite, proper, and at most n-fold branching tree T such that $T \not\models A$.

A formula A is derivable in BB_n iff $\sigma A \vdash \Delta$ yields a classically derivable $C \in \Delta$, for all σ and Δ .

Suppose $\not\vdash_{BB_n} A$. Then there is a finite, proper, and at most n-fold branching tree T such that $T \not\models A$. There is a σ such that

 $\sigma A \vdash_{\mathsf{BB}_n} \mathsf{nd} \; m_T$

A formula A is derivable in BB_n iff $\sigma A \vdash \Delta$ yields a classically derivable $C \in \Delta$, for all σ and Δ .

Suppose $\not\vdash_{BB_n} A$. Then there is a finite, proper, and at most n-fold branching tree T such that $T \not\models A$. There is a σ such that

 $\sigma A \vdash_{\mathsf{BB}_n} \mathsf{nd} \ m_T \vdash \{\mathsf{nd} \ w \mid w \in T \ \mathsf{maximal}\}\ .$

Corollary (G 2014):

 BB_n is the maximal intermediate logic with the rules below.

$$\frac{(\bigvee_{i=1}^{n} C_{i} \to A) \to \bigvee_{j=1}^{n} C_{j}}{\{(\bigvee_{i=1}^{n} C_{i} \to A) \to \bigvee C_{j}\}_{i=1}^{n}}$$

- Bellissima, F. (1986). "Finitely Generated Free Heyting Algebras". In: *The Journal of Symbolic Logic* 51.1, pp. 152–165. ISSN: 00224812. DOI: 10.2307/2273952.
- Citkin, A. (1979). "О Проверке Допустимости Не́которых Правил Интуиционистской Логике". Russian. In: V-th All-Union Conference in Mathematical Logic. English translation of title: On verification of admissibility of some rules of intuitionistic logic. Novosibirsk, p. 162.
- de Jongh, D. H. J. (1968). "Investigations on the Intuitionistic Propositional Calculus". PhD thesis. University of Wisconsin.
 - (1970). "A Characterization of the Intuitionistic Propositional Calculus". In: *Intuitionism and Proof Theory: Proceedings of the Summer Conference at Buffalo N.Y. 1968.* Ed. by J. M. A. Kino and R. Vesley. Vol. 60. Studies in Logic and the Foundations of Mathematics. Elsevier, pp. 211–217. DOI: 10.1016/S0049-237X(08)70752-3.

- Esakia, L. and R. Grigolia (1975). "Christmas trees. On free cyclic algebras in some varieties of closure algebras". In: *Bulletin of the Section of Logic* 4.3. ISSN: 0138-0680.
- Goudsmit, J. P. (2014). "Admissibility and Refutation". In: *Archive for Mathematical Logic*. DOI: 10.1007/s00153-014-0388-5.
- Goudsmit, J. P. and R. lemhoff (2014). "On unification and admissible rules in Gabbay-de Jongh logics". In: *Annals of Pure and Applied Logic* 165.2, pp. 652–672. ISSN: 0168-0072. DOI: 10.1016/j.apal.2013.09.003. URL: http://phil.uu.nl/preprints/lgns/number/297
 - http://phil.uu.nl/preprints/lgps/number/297.
- lemhoff, R. (2001a). "A(nother) characterization of intuitionistic propositional logic". In: *Annals of Pure and Applied Logic* 113.1-3. First St. Petersburg Conference on Days of Logic and Computability, pp. 161–173. ISSN: 0168-0072. DOI: 10.1016/S0168-0072(01)00056-2.
- (2001b). "On the Admissible Rules of Intuitionistic Propositional Logic". In: *The Journal of Symbolic Logic* 66.1, pp. 281–294. ISSN: 00224812. DOI: 10.2307/2694922.

Kreisel, G. and H. W. Putnam (1957). "Eine Unableitbarkeitsbeweismethode für den Intuitionistischen Aussagenkalkül". In: Archiv für mathematische Logik und Grundlagenforschung 3 (3-4), pp. 74–78. ISSN: 0003-9268. DOI:

10.1007/BF01988049.

- Łukasiewicz, J. (1952). "On the intuitionistic theory of deduction". In: *Indagationes Mathematicae* 14, pp. 202–212.
- Nishimura, I. (1960). "On Formulas of One Variable in Intuitionistic Propositional Calculus". In: *The Journal of Symbolic Logic* 25.4, pp. 327–331. ISSN: 00224812. DOI: 10.2307/2963526.
- Rieger, L. (1957). "Заметка о т. наз. свободных алгебрах с замыканиями". Russian. In: Czechoslovak Mathematical Journal 7.1. A remark on the s.c. free closure algebras, pp. 16–20. ISSN: 0011-4642; 1572-9141/e. URL: http://hdl.handle.net/10338.dmlcz/100226.
 - Rozière, P. (1992). "Règles admissibles en calcul propositionnel intuitionniste". PhD thesis. Université de Paris VII.

- Scott, D. (1957). "Completeness Proofs for the Intuitionistic Sentential Calculus". In: Summaries of talks presented at the summer institute for symbolic logic. Second Edition 25 July 1960. Communications Research Division, Institute for Defence Analyses, pp. 231–241.
- Shehtman, V. B. (1978). "Rieger-Nishimura lattices". English. In: Soviet Mathematics Doklady 19.4. Translation from Doklady Akademii Nauk SSSR 241, 1288-1291 (1978), pp. 1014-1018. ISSN: 0197-6788.
- Skura, T. F. (1989). "A complete syntactical characterization of the intuitionistic logic". In: *Reports on Mathematical Logic* 23, pp. 75–80.
- Urquhart, A. (1973). "Free Heyting algebras". In: *Algebra Universalis* 3.1, pp. 94–97. ISSN: 0002-5240. DOI: 10.1007/BF02945107.
- Visser, A. (1984). "Evaluation, provably deductive equivalence in Heyting's arithmetic of substitution instances of propositional formulas". In: *Logic Group Preprint Series* 4. URL: http://phil.uu.nl/preprints/lgps/number/4.