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Internalising Non-derivability



Theorem (G 2014):
A formula A is derivable iff σA ∆
yields a classically derivable C ∈ ∆,

for all σ and ∆.

Suppose ⊢IPC A and σA ∆. It follows that ⊢ σA, so there is a
C ∈ ∆ with ⊢IPC C. Hence ⊢CPC C, as desired.
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Corollary:
There is no proper extension of IPC
that inherits all its admissible rules.

Suppose L ⊋ IPC. This gives a A ∈ L− IPC. Hence there is a σ
and a ∆ with ̸⊢CPC C for all C ∈ ∆ such that

σA IPC ∆.

But ⊢L A, so ⊢L σA holds as well. This yields some C ∈ ∆ with
such that ⊢L C.
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Corollary:
There is no proper extension of IPC
that inherits all its admissible rules.

Suppose L ⊋ IPC. This gives a A ∈ L− IPC. Hence there is a σ
and a ∆ with ̸⊢CPC C for all C ∈ ∆ such that

σA L ∆.

But ⊢L A, so ⊢L σA holds as well. This yields some C ∈ ∆ with
such that ⊢CPC C, a contradiction.



Corollary (Iemhoff, 2001a):
IPC is the maximal intermediate

logic with the rules below, for all n.

(
∨n

i=1Ci → A) →
∨n

j=1Cj

{(
∨n

i=1Ci → A) →
∨
Cj}nj=1



The universal model

U (X )

is the
“smallest” model

on X

into which
every finite model

on X

fits.



The universal model U (X ) is the
“smallest” model on X into which

every finite model on X fits.



1957 Rieger

1960 Nishimura

1968 de Jongh

1973 Urquhart
1975 Esakia and Grigolia

1978 Shehtman

1986 Bellissima



The universal model is complete.

U (X ) ⊩ A iff ⊢ A for all A ∈ L(X).
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Expressing Extensions
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Visser Rules

(
∨n

i=1Ci → A) →
∨n

j=1C

{(
∨n

i=1Ci → A) → Cj}nj=1
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A logic with the
finite model property admits

the Visser rules

up to n

iff it has
the extension property.
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Characterisation of BBn



BBn = IPC+
n∧

i=0

xi →
∨
j ̸= i

xj

 →
∨
j ̸= i

xj

 →
n∨

i=0

xi



BBn ̸⊢ A iff there is a
finite, proper and at most

n-fold branching tree T with T ̸⊩ A.
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w1 wn
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w1 wn
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mT



Theorem (G 2014):
If T is a finite, proper, and at most

n-fold branching tree, then
ndmT {ndw | w ∈ T maximal}.



Theorem (G 2014):
A formula A is derivable in BBn iff
σA ∆ yields a classically derivable

C ∈ ∆, for all σ and ∆.

Suppose ̸⊢BBn A. Then there is a finite, proper, and at most
n-fold branching tree T such that T ̸⊩ A. There is a σ such that

σA ⊢BBn ndmT {ndw | w ∈ T maximal} .



Theorem (G 2014):
A formula A is derivable in BBn iff
σA ∆ yields a classically derivable

C ∈ ∆, for all σ and ∆.

Suppose ̸⊢BBn A.

Then there is a finite, proper, and at most
n-fold branching tree T such that T ̸⊩ A. There is a σ such that

σA ⊢BBn ndmT {ndw | w ∈ T maximal} .



Theorem (G 2014):
A formula A is derivable in BBn iff
σA ∆ yields a classically derivable

C ∈ ∆, for all σ and ∆.

Suppose ̸⊢BBn A. Then there is a finite, proper, and at most
n-fold branching tree T such that T ̸⊩ A.

There is a σ such that

σA ⊢BBn ndmT {ndw | w ∈ T maximal} .



Theorem (G 2014):
A formula A is derivable in BBn iff
σA ∆ yields a classically derivable

C ∈ ∆, for all σ and ∆.

Suppose ̸⊢BBn A. Then there is a finite, proper, and at most
n-fold branching tree T such that T ̸⊩ A. There is a σ such that

σA ⊢BBn ndmT

{ndw | w ∈ T maximal} .



Theorem (G 2014):
A formula A is derivable in BBn iff
σA ∆ yields a classically derivable

C ∈ ∆, for all σ and ∆.

Suppose ̸⊢BBn A. Then there is a finite, proper, and at most
n-fold branching tree T such that T ̸⊩ A. There is a σ such that

σA ⊢BBn ndmT {ndw | w ∈ T maximal} .



Corollary (G 2014):
BBn is the maximal intermediate

logic with the rules below.

(
∨n

i=1Ci → A) →
∨n

j=1Cj

{(
∨n

i=1Ci → A) →
∨
Cj}nj=1



Bellissima, F. (1986). “Finitely Generated Free Heyting Algebras”. In:
The Journal of Symbolic Logic 51.1, pp. 152–165. issn: 00224812.
doi: 10.2307/2273952.

Citkin, A. (1979). “О Проверке Допустимocти Hе́которых Правил
Интуиционистской Логике”. Russian. In: V-th All-Union
Conference in Mathematical Logic. English translation of title: On
verification of admissibility of some rules of intuitionistic logic.
Novosibirsk, p. 162.

de Jongh, D. H. J. (1968). “Investigations on the Intuitionistic
Propositional Calculus”. PhD thesis. University of Wisconsin.

– (1970). “A Characterization of the Intuitionistic Propositional
Calculus”. In: Intuitionism and Proof Theory: Proceedings of the
Summer Conference at Buffalo N.Y. 1968. Ed. by J. M. A. Kino and
R. Vesley. Vol. 60. Studies in Logic and the Foundations of
Mathematics. Elsevier, pp. 211–217. doi:
10.1016/S0049-237X(08)70752-3.

http://dx.doi.org/10.2307/2273952
http://dx.doi.org/10.1016/S0049-237X(08)70752-3


Esakia, L. and R. Grigolia (1975). “Christmas trees. On free cyclic
algebras in some varieties of closure algebras”. In: Bulletin of the
Section of Logic 4.3. issn: 0138-0680.

Goudsmit, J. P. (2014). “Admissibility and Refutation”. In: Archive for
Mathematical Logic. doi: 10.1007/s00153-014-0388-5.

Goudsmit, J. P. and R. Iemhoff (2014). “On unification and
admissible rules in Gabbay-de Jongh logics”. In: Annals of Pure
and Applied Logic 165.2, pp. 652–672. issn: 0168-0072. doi:
10.1016/j.apal.2013.09.003. url:
http://phil.uu.nl/preprints/lgps/number/297.

Iemhoff, R. (2001a). “A(nother) characterization of intuitionistic
propositional logic”. In: Annals of Pure and Applied Logic 113.1-3.
First St. Petersburg Conference on Days of Logic and
Computability, pp. 161–173. issn: 0168-0072. doi:
10.1016/S0168-0072(01)00056-2.

– (2001b). “On the Admissible Rules of Intuitionistic Propositional
Logic”. In: The Journal of Symbolic Logic 66.1, pp. 281–294. issn:
00224812. doi: 10.2307/2694922.

http://dx.doi.org/10.1007/s00153-014-0388-5
http://dx.doi.org/10.1016/j.apal.2013.09.003
http://phil.uu.nl/preprints/lgps/number/297
http://dx.doi.org/10.1016/S0168-0072(01)00056-2
http://dx.doi.org/10.2307/2694922


Kreisel, G. and H. W. Putnam (1957). “Eine
Unableitbarkeitsbeweismethode für den Intuitionistischen
Aussagenkalkül”. In: Archiv für mathematische Logik und
Grundlagenforschung 3 (3-4), pp. 74–78. issn: 0003-9268. doi:
10.1007/BF01988049.

Łukasiewicz, J. (1952). “On the intuitionistic theory of deduction”.
In: Indagationes Mathematicae 14, pp. 202–212.

Nishimura, I. (1960). “On Formulas of One Variable in Intuitionistic
Propositional Calculus”. In: The Journal of Symbolic Logic 25.4,
pp. 327–331. issn: 00224812. doi: 10.2307/2963526.

Rieger, L. (1957). “Заметка o т. наз. cвoбoдных алгебрах c
замыканиями”. Russian. In: Czechoslovak Mathematical Journal
7.1. A remark on the s.c. free closure algebras, pp. 16–20. issn:
0011-4642; 1572-9141/e. url:
http://hdl.handle.net/10338.dmlcz/100226.

Rozière, P. (1992). “Règles admissibles en calcul propositionnel
intuitionniste”. PhD thesis. Université de Paris VII.

http://dx.doi.org/10.1007/BF01988049
http://dx.doi.org/10.2307/2963526
http://hdl.handle.net/10338.dmlcz/100226


Scott, D. (1957). “Completeness Proofs for the Intuitionistic
Sentential Calculus”. In: Summaries of talks presented at the
summer institute for symbolic logic. Second Edition 25 July 1960.
Communications Research Division, Institute for Defence
Analyses, pp. 231–241.

Shehtman, V. B. (1978). “Rieger-Nishimura lattices”. English. In:
Soviet Mathematics Doklady 19.4. Translation from Doklady
Akademii Nauk SSSR 241, 1288-1291 (1978), pp. 1014–1018. issn:
0197-6788.

Skura, T. F. (1989). “A complete syntactical characterization of the
intuitionistic logic”. In: Reports on Mathematical Logic 23,
pp. 75–80.

Urquhart, A. (1973). “Free Heyting algebras”. In: Algebra Universalis
3.1, pp. 94–97. issn: 0002-5240. doi: 10.1007/BF02945107.

Visser, A. (1984). “Evaluation, provably deductive equivalence in
Heyting’s arithmetic of substitution instances of propositional
formulas”. In: Logic Group Preprint Series 4. url:
http://phil.uu.nl/preprints/lgps/number/4.

http://dx.doi.org/10.1007/BF02945107
http://phil.uu.nl/preprints/lgps/number/4

	Introduction
	Definition of Admissible Rule
	Example: Harrop's Rule
	Disjunction Property
	History
	Results
	Universal Model

	Visser Rules
	Characterisation the Logics of Bounded Branching

